

Deep Learning

03 MLP: Representation Power of an MLP

Dr. Konda Reddy Mopuri Dept. of Artificial Intelligence IIT Hyderabad Jan-May 2024

Any Boolean function of n inputs can be exactly represented with one hidden layer!

Universal Approximation (for real functions)

() We can represent any continuous function $(f : \mathcal{R}^m \to \mathcal{R}^n)$ to any desired approximation $(|g(x) - f(x)| < \epsilon)$ with a linear combination of sigmoid neurons

Universal Approximation (for real functions)

- **()** We can represent any continuous function $(f : \mathcal{R}^m \to \mathcal{R}^n)$ to any desired approximation $(|g(x) f(x)| < \epsilon)$ with a linear combination of sigmoid neurons
- In other words, neural networks with a single hidden layer can be used to approximate any continuous function to any desired precision

Universal Approximation

र्श्वार्थकी क्रि. क्र भारतीय प्रौद्योगिकी संस्थान ईवराबाव Indian Institute of Technology Hyderabad

Math. Control Signals Systems (1989) 2: 303-314

Mathematics of Control, Signals, and Systems © 1989 Springer-Verlag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenko†

Neural Networks, Vol. 4, pp. 251-257, 1991 Printed in the USA. All rights reserved. 0893-6080/91 \$3.00 + .00 Copyright © 1991 Pergamon Press plc

ORIGINAL CONTRIBUTION

Approximation Capabilities of Multilayer Feedforward Networks

KURT HORNIK

Technische Universität Wien, Vienna, Austria

Dr. Konda Reddy Mopuri

dl - 03/Universal Approximation

Universal Approximation

Let's look at the visual proof!

• Two hidden units and one output unit

Figure from Michael Nielsen's NNDL textbook

• Sigmoid neurons can closely approximate a step function!

Figure from Michael Nielsen's NNDL textbook

• Let's simplify the neuron representation with a single parameter (s)

Figure from Michael Nielsen's NNDL textbook

• Let's simplify the neuron representation with a single parameter (s)

Figure from Michael Nielsen's NNDL textbook

Weighted output of hidden neurons

Figure from Michael Nielsen's NNDL textbook

• Can output a pulse/tower of desired width and height!

Figure from Michael Nielsen's NNDL textbook

• Can output a pulse/tower of desired width and height!

Figure from Michael Nielsen's NNDL textbook

• Can output a pulse/tower of desired width and height!

Figure from Michael Nielsen's NNDL textbook

• With more neurons in the hidden layer, more towers!

Figure from Michael Nielsen's NNDL textbook

• With more neurons in the hidden layer, more towers!

Figure from Michael Nielsen's NNDL textbook

I Note that we computed only the weighted sum of the hidden outputs

- In Note that we computed only the weighted sum of the hidden outputs
- It's not the output of our MLP

• For approximating f(x), the input to the output neuron has to be $\sigma^{-1}(f(x))$ (note that the bias is zero)

Figure from Michael Nielsen's NNDL textbook

 $\bullet\,$ Manipulating the width and height of the towers \to a better approximation of the function

Figure from Michael Nielsen's NNDL textbook

Dr. Konda Reddy Mopuri

dl - 03/Universal Approximation

• Let's consider two input variables

Figure from Michael Nielsen's NNDL textbook

• Let's set $w_2 = 0$

Figure from Michael Nielsen's NNDL textbook

• As seen earlier, let's approximate the step function

Figure from Michael Nielsen's NNDL textbook

- As seen earlier, let's approximate the step function
- Use a single parameter s = -b/w to represent

Figure from Michael Nielsen's NNDL textbook

• The step function in the y direction

Figure from Michael Nielsen's NNDL textbook

• Towards the tower in 3D

Figure from Michael Nielsen's NNDL textbook

• Towards the tower in 3D

Figure from Michael Nielsen's NNDL textbook

• Towards the tower in 3D

Figure from Michael Nielsen's NNDL textbook

• Towards the tower in 3D

Figure from Michael Nielsen's NNDL textbook

Towards the tower in 3D

Figure from Michael Nielsen's NNDL textbook

• Several of the towers can approximate arbitrary functions

Figure from Michael Nielsen's NNDL textbook

• Several of the towers can approximate arbitrary functions

Figure from Michael Nielsen's NNDL textbook

• Three input variables

Figure from Michael Nielsen's NNDL textbook

Universality for vector-valued functions

భారతీయ సాంకేతిక విజ్ఞాన సంస్థ హైదరాబాద్ भारतीय प्रौद्योगिकी संस्थान हेवरावाव Indian Institute of Technology Hyderabad

•
$$f(x): \mathcal{R}^m \to \mathcal{R}^n$$

Universality for vector-valued functions

- $f(x): \mathcal{R}^m \to \mathcal{R}^n$
- Can be regarded as n separate real-valued functions $f^1(x_1,\ldots,x_m),\ldots,f^n(x_1,\ldots,x_m)$

Universality for vector-valued functions

- $f(x): \mathcal{R}^m \to \mathcal{R}^n$
- Can be regarded as n separate real-valued functions $f^1(x_1,\ldots,x_m),\ldots,f^n(x_1,\ldots,x_m)$
- ${\ensuremath{\, \circ }}$ Create a network approximating each function f^i and put them all together

Universal Approximation: Original form

Theorem 0.1 (UAT, [Cyb89, Hor91]). Let $\sigma : \mathbb{R} \to \mathbb{R}$ be a non-constant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0, 1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\varepsilon > 0$ and any function $f \in C(I_m)$, there exist an integer N, real constants $v_i, b_i \in \mathbb{R}$ and real vectors $w_i \in \mathbb{R}^m$ for i = 1, ..., N, such that we may define:

$$F(\boldsymbol{x}) = \sum_{i=1}^{N} v_i \sigma \left(\boldsymbol{w}_i^T \boldsymbol{x} + b_i \right) = \boldsymbol{v}^{\mathsf{T}} \sigma \left(\boldsymbol{W}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b} \right)$$

as an approximate realization of the function f; that is,

 $|F(\boldsymbol{x}) - f(\boldsymbol{x})| < \varepsilon$

for all $x \in I_m$.

Universal Approximation: Later

• Target function may lie on a space other than the hypercube (has to be bounded)

Universal Approximation: Later

- Target function may lie on a space other than the hypercube (has to be bounded)
- Discontinuous targets can be approximated arbitrarily well

Universal Approximation: Later

- Target function may lie on a space other than the hypercube (has to be bounded)
- Discontinuous targets can be approximated arbitrarily well
- σ can be as general as any nonpolynomial function ($\sigma(z)$ well-defined and different $z \to \infty$ and $z \to -\infty$; at least one side bounded)

Universal Approximation

• Note that our visual proof had a network with two hidden layers

Universal Approximation

- Note that our visual proof had a network with two hidden layers
- One can show that a single hidden layer can do this

⁽¹⁾ Let's approximate the following function using a bunch of ReLUs: $x^{3}+x^{2}-x-1$

Example credits: Brendan Fortuner, and https://towardsdatascience.com/

Dr. Konda Reddy Mopuri

dl - 03/Universal Approximation

Example credits: Brendan Fortuner, and https://towardsdatascience.com/

Dr. Konda Reddy Mopuri

dl - 03/Universal Approximation

Appropriate combination of these ReLUs:

 $-n_1 - n_2 - n_3 + n_4 + n_5 + n_6$

- ① Appropriate combination of these ReLUs: $-n_1 - n_2 - n_3 + n_4 + n_5 + n_6$
- 2 Note that this also holds in case of other activation functions with mild assumptions.

If one hidden layer is good enough, why Deep learning?

1 May require an infeasible size for the hidden layer

If one hidden layer is good enough, why Deep learning?

- May require an infeasible size for the hidden layer
- 2 May not generalize well

If one hidden layer is good enough, why Deep learning?

- 1 May require an infeasible size for the hidden layer
- 2 May not generalize well
- ③ Doesn't enable the hierarchical learning

MLP for regression

- (1) Output is a continuous variable in \mathcal{R}^D
 - Output layer has that many neurons (When D = 1, regresses a scalar value)
 - May employ a squared error loss

MLP for regression

- ${f 1}$ Output is a continuous variable in ${\cal R}^D$
 - $\, \bullet \,$ Output layer has that many neurons (When D=1, regresses a scalar value)
 - May employ a squared error loss
- 2 Can have an arbitrary depth (number of layers)

MLP for classification

 $\textcircled{0} Categorical output in \mathcal{R}^{C} where C is the number of categories$

dl - 03/Universal Approximation

MLP for classification

- रूठवैव्यं अन्वर्डवे अस्तुरुं २०२५ हिन्द्रम्प्रम् मारतीय प्रीचोगिळी संख्यान हेवरावाव Indian Institute of Technology Hyderabad
- **①** Categorical output in \mathcal{R}^C where C is the number of categories
- 2 Predicts the scores/confidences/probabilities towards each category
 - Then converts into a pmf
 - Employs loss that compares the probability distributions (e.g. cross-entropy)

MLP for classification

- बुग्ठेंब्रिकी क्रोन्डेंब्रिड क्रिड्राई उठकुं ट्रॅन्ट्रेफ्टम्टी पारतीय प्रीयोगिकी संख्यान इंदराबाव Indian Institute of Technology Hyderabad
- **①** Categorical output in \mathcal{R}^C where C is the number of categories
- 2 Predicts the scores/confidences/probabilities towards each category
 - Then converts into a pmf
 - Employs loss that compares the probability distributions (e.g. cross-entropy)
- ③ Can have an arbitrary depth

Extending Linear Classifier

1 Single class: $f(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + b)$ from $\mathcal{R}^D \to \mathcal{R}$ where \mathbf{w} and $\mathbf{x} \in \mathcal{R}^D$

Extending Linear Classifier

- **1** Single class: $f(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + b)$ from $\mathcal{R}^D \to \mathcal{R}$ where \mathbf{w} and $\mathbf{x} \in \mathcal{R}^D$
- 2 Multi-class: $f(\mathbf{x}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$ from $\mathcal{R}^D \to \mathcal{R}^C$ where $\mathbf{W} \in \mathcal{R}^{C \times D}$ and $\mathbf{b} \in \mathcal{R}^C$

Single unit to a layer of Perceptrons

Single unit to a layer of Perceptrons

Single unit to a layer of Perceptrons

